The localization and phosphorylation of p47 are important for Golgi disassembly–assembly during the cell cycle
نویسندگان
چکیده
In mammalian cells, the Golgi apparatus is disassembled at the onset of mitosis and reassembled at the end of mitosis. This disassembly-reassembly is generally believed to be essential for the equal partitioning of Golgi into two daughter cells. For Golgi disassembly, membrane fusion, which is mediated by NSF and p97, needs to be blocked. For the NSF pathway, the tethering of p115-GM130 is disrupted by the mitotic phosphorylation of GM130, resulting in the inhibition of NSF-mediated fusion. In contrast, the p97/p47 pathway does not require p115-GM130 tethering, and its mitotic inhibitory mechanism has been unclear. Now, we have found that p47, which mainly localizes to the nucleus during interphase, is phosphorylated on Serine-140 by Cdc2 at mitosis. The phosphorylated p47 does not bind to Golgi membranes. An in vitro assay shows that this phosphorylation is required for Golgi disassembly. Microinjection of p47(S140A), which is unable to be phosphorylated, allows the cell to keep Golgi stacks during mitosis and has no effect on the equal partitioning of Golgi into two daughter cells, suggesting that Golgi fragmentation-dispersion may not be obligatory for equal partitioning even in mammalian cells.
منابع مشابه
Cell cycle regulation of VCIP135 deubiquitinase activity and function in p97/p47-mediated Golgi reassembly
In mammalian cells, the inheritance of the Golgi apparatus into the daughter cells during each cycle of cell division is mediated by a disassembly and reassembly process, and this process is precisely controlled by phosphorylation and ubiquitination. VCIP135 (valosin-containing protein p97/p47 complex-interacting protein, p135), a deubiquitinating enzyme required for p97/p47-mediated postmitoti...
متن کاملPhosphorylation regulates VCIP135 function in Golgi membrane fusion during the cell cycle.
The Golgi apparatus in mammalian cells consists of stacks that are often laterally linked into a ribbon-like structure. During cell division, the Golgi disassembles into tubulovesicular structures in the early stages of mitosis and reforms in the two daughter cells by the end of mitosis. Valosin-containing protein p97-p47 complex-interacting protein, p135 (VCIP135), an essential factor involved...
متن کاملp97/p47-Mediated biogenesis of Golgi and ER.
In mammalian cells, the Golgi apparatus and endoplasmic reticulum have typical structures during interphase: stacked cisternae located adjacent to the nucleus and a network of interconnected tubules throughout the cytoplasm, respectively. At mitosis their architectures disappear and are reassembled in daughter cells. p97, an AAA-ATPase, mediates membrane fusion and is required for reassembly of...
متن کاملSequential phosphorylation of GRASP65 during mitotic Golgi disassembly
GRASP65 phosphorylation during mitosis and dephosphorylation after mitosis are required for Golgi disassembly and reassembly during the cell cycle. At least eight phosphorylation sites on GRASP65 have been identified, but whether they are modified in a coordinated fashion during mitosis is so far unknown. In this study, we raised phospho-specific antibodies that recognize phosphorylated T220/T2...
متن کاملMonoubiquitination of Syntaxin 5 Regulates Golgi Membrane Dynamics during the Cell Cycle.
The Golgi apparatus undergoes a ubiquitin-dependent disassembly and reassembly process during each cycle of cell division. Here we report the identification of the Golgi t-SNARE syntaxin 5 (Syn5) as the ubiquitinated substrate. Syn5 is monoubiquitinated by the ubiquitin ligase HACE1 in early mitosis and deubiquitinated by the deubiquitinase VCIP135 in late mitosis. Syn5 ubiquitination on lysine...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of Cell Biology
دوره 161 شماره
صفحات -
تاریخ انتشار 2003